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ABSTRACT

In this paper we present novel results on the reconstruction of stereoscopic information from a single phase-shift
hologram captured using a 2.2µm pixel-pitch CMOS camera in a holographic interferometer configuration. The
low pixel-pitch camera allows the digitizing of holograms with a higher spatial-frequency than what has been
reported in the literature, allowing the recording of macroscopic objects closer to the camera sensor.

The reconstructed information can be visualized using 3D stereo glasses. From the perceived 3D we could
identify several depth cues, including the occlusion effect which has not been easy to produce from single-aperture
holography. The occlusion effect is also known to be difficult to produce from stereoscopic sources.
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1. INTRODUCTION

High quality 3-D video is regarded by the general public as the ultimate viewing experience. The
objective is well-understood and has been depicted in many popular fiction movies: the target is a
magical and somewhat mysterious optical replica of an object that is visually indistinguishable from
its original (except perhaps in size).1

Holography is a way to fully reconstruct a complex wavefield by recording its interference with a coherent
reference beam. It was first presented by D. Gabor in 1948 while trying to improve electron microscopy.2 With
the invention of L.A.S.E.R., E. Leith and J. Upatnieks developed the first transmission hologram in 1962 while
Y. Denisyuk developed the first reflection hologram. Traditionally, an hologram is an interference fringe that
is recorded in photosensitive film using holography. When that pattern is illuminated with the reference light,
the diffracted wavefield fully reconstructs the captured object along with all its properties: light intensity and
depth; there is no optical difference between the real and reconstructed objects.

It wasn’t much later that the first computer generated hologram (CGH) was produced, A. Lohmann and D.
Paris made that breakthrough in 1967 using the limited computing capabilities at that time. In 1980 Yaroslavskii
and Merzlyakov established the theoretical background for CGH. From here, holography turned into a impor-
tant research topic and made its way into the most diverse applications including data storage, security, medical
imaging, deformation/displacement measurement and of course, 3D displays.3,4 Building digital holographic dis-
plays that are able to compete with current stereoscopic technology requires capabilities beyond actual electronic
technology.3,4

The interference fringe - or hologram - can also be reconstructed numerically using a computer. First the
hologram needs to be digitized using a digital camera; then wave propagation is simulated using the computer
to produce the reconstructed object. To our knowledge L. Yu et al. were the first presenting a method for
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Figure 1. Holographic Recording Setup using a Mach-Zehnder configuration. A - light absorber; BS - beam-splitter; L -
collimating lens; M - mirror; O - physical object; PM - piezo-electric mirror; PS - power supply; SF - spatial filter.

reconstruction of digital holograms with variable viewing angles.5 They used a coordinate transformation in the
Fresnel domain to account the new view, then the reconstructed complex amplitudes are numerically interpolated
to compensate for the distortion caused by the changed coordinates. They experimentally demonstrate their
method using digital holograms generated from 2D synthetic images. One year later, K. Matsushima presented
a method6 for the reconstruction of digital holograms in tilted planes. The method consists in wave propagation
using the angular spectrum, where a rotation of the spectrum is performed using numerical interpolation. They
demonstrate their method using simple diffraction patterns generated numerically. In 2008, T. Nakatsuji et al.
presented a method for reconstruction of free-viewpoint images from synthetic aperture digital holograms.7 In
this method, the camera sensor is moved around in order to capture several holograms that, when tiled together,
assemble a larger digital hologram. Then, waves are propagated from a sliding pupil in the hologram, using the
angular spectrum; yielding to the reconstruction of several views. Three years later, in 2011, T. Pitkäaho et al.
presented a method for calculating depth maps from digital holograms.8 The method works by using the same
pupil principle of Nakatsuji,7 to produce a stereo pair. A depth map is then computed from the stereo pair using
3D image processing.

In this paper we present novel results on the reconstruction of stereo images from single (non synthetic-
aperture) digital holograms recorded from real-world macroscopic objects. The method works by performing
filtering in the angular spectrum of the object waves, which is computationally less expensive than the inter-
polation method of Matsushima.6 If the complex amplitudes at the object plane are to be coded and stored
(as suggested by some authors9) instead of the hologram transmittance, the presented method stands as a good
alternative to the the sliding pupil method of Pitkäaho,8 since it does not require wave-propagation.

In section 2 a description of the recording setup is made and the Fresnel Transform is briefly reviewed. Then
in section 2.3 the proposed method is presented, followed by the experimental results (sec. 4) and conclusion
(sec. 5).

2. DIGITAL RECORDING AND NUMERICAL RECONSTRUCTION OF
HOLOGRAMS

2.1 The holographic acquisition system

The acquisition system (see fig. 1) follows a holographic interferometer configuration to produce in-line digital
holograms. A beam-splitter is used to split a beam coming from a He-Ne 632.8 nm laser into the reference and
object beams. The object beam is then spatially filtered using a microscope lens and pinhole, collimated and
redirected to illuminate the object to be recorded. The reference beam hits a piezo-electric mirror, as done in10

which allows shifting the phase electronically using the computer, providing phase-shifting holography.10 The
reference beam reflected from the mirror is then spatially filtered and collimated, resulting in a plane wave. The
wavefront scattered from the object is superposed with the reference wavefront (fig. 1), resulting in a interference
fringe. The fringe is then digitized by a Guppy F-503 camera, having a CMOS sensor with a 2.2µm pixel-pitch,
2592x1944 pixels of resolution and 12bit bit-depth. This particular model was chosen due to its small pixel-pitch,
compared to the 6.8µm which is the lowest we could find in the literature.11
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Figure 2. Hologram recording: maximum interference angle αmaxx for in-line holography;12 Ls and Lo are the lateral
sizes of the camera sensor and object respectively, d is the recording distance.

The phase information of the wave superposition is naturally lost during the digitizing process, however by
employing the phase-shifting technique10 one can derive the complex amplitudes at the camera sensor plane (let
us refer to them as the hologram transmittance τ(x, y) from now on). By doing so, the numerical reconstruction
also yields to holograms free of the zero-order and conjugate term.

2.2 The spatial frequency limitation

The maximum horizontal spatial frequency of an hologram at the camera plane is determined by its maximum
interference angle αmax (fig. 2) and the recording wavelength λ:

fmax =
sin(αmax)

λ
. (1)

Consider the experimental setup of fig. 2. The object is located at a distance d from the camera sensor and the
reference wave R propagates normally to the sensor plane. The measures Ls and Lo are the lateral sizes of the
sensor and object, respectively. If the sensor and object centres are assumed to be in the same optical path, the
maximum interference angle is given by (fig. 2):

αmax = tan−1

(
Ls + Lo

2d

)
. (2)

Ensuring that the sampling rate of the camera sensor is at least twice the maximum spatial frequency of the
hologram yields to the recording of holograms free of aliasing:

fmax =
1

2∆x
. (3)

In other words and considering the paraxial approximations, we can derive the following relationship from the
previous equations:

1

∆x
≥ Ls + Lo

λd
, (4)

where ∆x is the horizontal pixel-pitch of the camera sensor. Notice that a lower pixel-pitch camera sensor allows
the recording of bigger objects and closer to the camera, providing a higher perception of depth.

2.3 Numerical reconstruction

Consider a plane wave R with wavelength λ diffracting on the hologram transmittance τ(x, y), producing the
wavefield Γ. The object information can be numerically reconstructed at an plane ξη parallel to the camera
sensor and at an distance d from it, using the Fresnel transform:11

Γ(ξ, η) =
i

λd
e[−i2π/λd]e[−iπ/λd(ξ

2+η2)]

×
∫ ∫

R(x, y)τ(x, y)e[−iπ/λd(x
2+y2)]

×e[i2π/λd(ξx+ηy)] dx dy. (5)



Figure 3. Geometry for the numerical reconstruction of the VL, VR stereo views. Le is the average distance between eyes,
d the recording distance.
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Figure 4. Highest angular frequency αmax of the object spectrum, before and after a camera shift of Le/2.

The reference wave R can be approximated by a complex amplitude with unitary amplitude and zero phase.
Furthermore, eq. 5 can be easily discretized11 and calculated using one FFT.13

The reconstructed intensities distribution of the object can then be obtained by:

I(ξ, η) = |Γ(ξ, η)|2. (6)

3. NUMERICAL RECONSTRUCTION OF A STEREO PAIR

3.1 Introduction

Let us consider fig. 3, where the object lies at a distance d from the camera sensor. When the object is
illuminated with coherent light some of the plane waves scattered from the object arrive into the camera sensor,
interfering with the reference waves. The resulting interference fringe is digitized by the camera as the hologram
transmittance τ(x, y). Then, as seen in the previous section, the diffracted field from the hologram transmittance
is computed to produce the reconstructed image of the object.

Now imagine two apertures VL, VR providing a 3D stereo view of the object and placed at an distance
Le = 0.067 m of each other, which is chosen to match the average interpupillary distance of a US male person.14

By looking at figures 3, it is clear that each of the apertures allow plane waves with different directions to pass,
corresponding to the information that would be visible by each of the views. In another words, each aperture
behaves as a bandpass filter on the spatial frequency spectrum of the plane waves coming from the object, as
explained in the next sections.

3.2 The Angular Spectrum of the object waves

Let us reconsider the diffracted field Γ given by using the Fresnel Transform (eq. 5). The complex amplitudes
Γ(ξ, η) are a superposition of plane waves with spatial frequencies fx, fy:

Γ(ξ, η) =

∫ ∫
G(fx, fy)ej2π(fxξ+fyη). (7)



The inverse transformation also known as the angular spectrum (ASP) is given by:

G(fx, fy) =

∫ ∫
Γ(ξ, η)e−j2π(fxξ+fyη). (8)

The spectrum G is bounded by [−fmax, fmax] in the x-axis, being fmax the maximum spatial frequency that the
camera sensor can record (eq. 3).

3.3 Stereo views in the Angular Spectrum

Consider fig. 4 which depicts the highest angular frequency (αmax) of the object spectrum. Considering the
paraxial case from now on, αmax can be formulated as:

αmax = sin(λfmax) ≈ λfmax. (9)

The point P is the object point furtherest away from the optical center in the x-axis, that can be recorded by
the camera sensor. If there is a positive shift of Le

2 in the camera position (ending as view VL), then we can
see that the corresponding angular frequency of point P is reduced to α1. With the help of fig. 4 we can then
derive:

Lr = d tan(αmax) ≈ dαmax, (10)

which allows us to calculate α1:

α1 =
Lr − Le

2

d
=
dαmax − Le

2

d
= αmax −

Le
2d
. (11)

One can also rewrite the previous equation as spatial frequencies:

f1 = fmax −
Le
2λd

. (12)

If we redraw fig. 4 to consider the lowest angular frequency instead, it is possible to formulate a similar expression:

f2 = −fmax −
Le
2λd

. (13)

The frequencies [f2, f1] are the new bounds of the object spectrum, visible at the view VL. By looking closely at
figure 4, we realize that the factor in equations 12 and 13:

fs =
Le
2λd

(14)

does actually represent a spatial-frequency shift in the object spectrum, caused by the displacement of the
camera.

3.4 Filtering in the Angular Spectrum

As seen in the previous sections, the object spectrum G from eq. 8 is limited to [−fmax, fmax] in the x-axis
(eq. 3). If moving the camera sensor about ±Le shifts the spectrum in about ±fs then it is clear that some
frequencies get out of the spectrum while new frequencies come in. Those frequencies do actually correspond to
the information that was only visible at each of the positions of the camera sensor. Because there is no way to
know the new frequencies being shifted into the spectrum, we will consider them as zero. This way, an estimation
of the spectrum corresponding to each view can be obtained by introducing a bandpass filter Fn:

Ĝ(fx, fy) = Fn(fx, fy)G(fx, fy), (15)

with n chosen to either L or R, according to the view that is being considered:

FL(fx, fy) =

{
1, fx ≤ f1
0, fx > f1

(16)

FR(fx, fy) =

{
1, fx ≥ f2
0, fx < f2

. (17)

An additional Fourier Transform must be performed (eq. 8) to get the filtered complex amplitudes Γ̂(ξ, η) back.
Each stereo view of the object can then be obtained by eq. using 6.



Figure 5. Scaled hologram transmittances for the ”cube” (left) and ”king” (right) objects. The visible fringes are low
spatial frequencies and do not contribute significantly to the speckle noise of the reconstructed intensities.

Figure 6. In order: Left, front, right, view reconstructions and disparity map of the ”cube” hologram, scale 1:1 (1548 dpi).

4. EXPERIMENTAL RESULTS

Consider the two hologram transmittances (fig. 5), obtained by using the the experimental setup described in
section 2.1. The corresponding real-world objects were located at a distance d = 0.146 m from the camera sensor,
which is the lowest allowed by its spatial frequency limitation (see sec. 2.2).

The complex wavefield (Γ) at the object plane is numerically reconstructed from a hologram transmittance
by using the discrete Fresnel Transform (eq. 5). The calculation of the intensities distribution (eq. 6) from Γ
leads to the front 2D view reconstruction of the object (figs. 6 and 7). To obtain a 3D stereo view reconstruction
of the object, the ASP of Γ is calculated first. Afterwards, eq. 15 is evaluated for each of the views, the resulting
filtered spectrums are then inverse Fourier transformed to produce Γ̂L, Γ̂R. The calculation of the intensities
distribution (eq. 6) for each of the complex wavefields produces the left and right views of the object (figs. 6
and 7): the whole procedure is performed using 4 FFTs. Finally, to reduce the speckle noise, a temporarily
incoherent illumination source is simulated.15

By visually comparing the L/R views from figs. 6 and 7 we could identify changes of lightening and a subtle
occlusion effect, due to the change of viewpoint. Binocular disparity (calculated using the method from8) is also
present as seen in the same figures. We were also able to perceive depth using the NVIDIA 3D vision R© active
shutter glasses, despite the speckle nature of the images.

It is interesting to point out that after filtering in the ASP of the object, the bandwidth left for reconstruction
was only 20%. Nonetheless, it does not seem to cause significant degradation in the speckle quality of the
reconstruction. Also, the ”ghosting” effects visible in both reconstructions are not aliasing effects, being just
reflections of the object inside the beam-splitter surfaces (fig. 1). Finally, the images displayed in this paper
(figs. 6 and 7) had their luminance equalized to increase perceptibility when printed, this has the side effect of
increasing the speckle noise as well.

5. CONCLUSION

We were successful at the numerical reconstruction of a stereo pair from a single digital hologram. The recon-
structed information can be visualized using 3D stereo glasses, providing the sensation of stereopsis. From the

Figure 7. In order: Left, front, right, view reconstructions and disparity map of the ”king” hologram, scale 1:1 (1548 dpi).



perceived 3D we could identify several depth cues, including the occlusion effect.

If the complex amplitudes at the object plane are to be coded and stored instead of the hologram transmit-
tance, the presented method stands as a good alternative to the the sliding pupil method of,8 since it does not
require wave-propagation.

With the upcoming 4k digital format it is expected that new higher-resolution cameras will be available,
allowing the reconstruction of more than two views using the presented method.
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